
Learning Design Semantics for Mobile Apps

Thomas F. Liu1 Mark Craft1 Jason Situ1 Ersin Yumer2 Radomir Mech2 Ranjitha Kumar1

1University of Illinois at Urbana-Champaign 2Adobe Systems Inc.
{tfliu2,mscraft2,junsitu2,ranjitha}@illinois.edu, meyumer@gmail.com, rmech@adobe.com

ABSTRACT
Recently, researchers have developed black-box approaches
to mine design and interaction data from mobile apps. Al-
though the data captured during this interaction mining is
descriptive, it does not expose the design semantics of UIs:
what elements on the screen mean and how they are used.
This paper introduces an automatic approach for generating
semantic annotations for mobile app UIs. Through an iter-
ative open coding of 73k UI elements and 720 screens, we
contribute a lexical database of 25 types of UI components,
197 text button concepts, and 135 icon classes shared across
apps. We use this labeled data to learn code-based patterns
to detect UI components and to train a convolutional neural
network that distinguishes between icon classes with 94% ac-
curacy. To demonstrate the efficacy of our approach at scale,
we compute semantic annotations for the 72k unique UIs in
the Rico dataset, assigning labels for 78% of the total visible,
non-redundant elements.

Author Keywords
Design semantics; mobile app design; machine learning

INTRODUCTION
The ubiquity of mobile apps in everyday life — and their
availability in centralized app repositories — make them an
attractive source for mining digital design knowledge [1, 24].
Recently, Deka et al. introduced interaction mining, a black-
box approach for capturing design and interaction data while
an Android app is being used [9]. The data captured during
interaction mining exposes a UI’s screenshot; the elements it
comprises along with their render-time properties (i.e., An-
droid view hierarchy); and the interactions performed on the
screen along with their connections to other UI states in the
app. This data provides a near-complete specification of a UI
that is often sufficient to reverse engineer it, but it fails to ex-
pose the semantics of UIs: what elements on the screen mean
and how users interact with them to accomplish goals.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10. . . 15.00

DOI: https://doi.org/10.1145/3242587.3242650

Figure 1: This paper introduces a code- and vision-based approach for
adding semantic annotations to the elements comprising a mobile UI.
Given a UI’s screenshot and view hierarchy, we automatically identify 25
UI component categories, 197 text button concepts, and 99 icon classes.

This paper presents an automated approach for generating se-
mantic annotations for mobile UI elements, given a screen-
shot and view hierarchy (Figure 1). These annotations iden-
tify both the structural roles (e.g., image content, bottom
navigation) and the functional ones (e.g., login button, share
icon) that elements play in the UI’s design. To develop this
approach, we first generated a lexical database of UI compo-
nents and UX concepts (i.e., text buttons and icons) that are
shared across apps through an iterative open coding of 73k UI
elements and 720 screens. Then, we leveraged this database
to learn code-based patterns to detect different components,
and trained a convolutional neural network (CNN) to distin-
guish between icon classes.

To bootstrap this lexical database, we referenced popular de-
sign libraries and app-prototyping tools to create a vocabulary
of UI components and UX concepts. We refined and aug-
mented this vocabulary through unsupervised clustering and
iterative coding of more than 73k elements sampled from the
Rico dataset, which comprises interaction mining data from
9.7k Android apps [8]. Through this process, we identified 25
types of UI components, 197 text button concepts, and 135
icon classes. The resultant database also exposes icon and
text-button synonym sets related to each UX concept, cre-
ating links between the visual and textual elements used in
digital design.

mailto:ranjitha@illinois.edu
mailto:meyumer@gmail.com
mailto:rmech@adobe.com
https://doi.org/10.1145/3242587.3242650


Figure 2: Screenshots illustrating the 25 UI component categories we identified through an open iterative coding of 720 UI screens from the Rico dataset.

To annotate mobile UIs, we employ a code- and vision-based
approach that leverages the labeled data generated in the cre-
ation of the lexical database. We identified a set of textual
and structural patterns in the view hierarchies that were pre-
dictive of each component class except for icons, which are
difficult to distinguish from other images via static analy-
sis. To identify icons, we first trained a convolutional neural
network (CNN) which distinguishes between 99 icon classes
with 94% accuracy. We pass the activation vectors produced
by the CNN through a Gaussian mixture model trained to de-
tect icon anomalies, or image inputs that do not belong to any
of the 99 icon classes. The CNN with anomaly detection cor-
rectly predicts whether an image is an icon — and if so, the
class to which it belongs — 90% of the time.

To demonstrate the utility of the approach at scale, we com-
pute semantic annotations for the 72k unique UIs in the Rico
dataset.1 After removing hidden and redundant elements
from Rico’s view hierarchies, we achieve 78% element cov-
erage with our technique. As a final contribution, we train an
autoencoder over the annotated screenshots, illustrating how
element-level annotations can be used to learn screen-level
semantic embeddings.

CREATING A LEXICAL UI/UX DATABASE
Semantic models of design explain how low-level features
such as colors, shapes, and interactivity communicate high-
level concepts that affect how users perceive and use arti-
facts [5, 14, 16]. In this paper, we categorize UI compo-
nents to provide semantics that describe the structural roles
(e.g., image content, bottom navigation) elements play on a
screen. Similarly, we analyze text buttons and icons to deter-
mine functional semantics: UX concepts that describe how
elements and screens are used. Based on the UI/UX cate-
gories we identify and the labeled data generated in the pro-
cess, we create a lexical database which enumerates a set of
design semantics and maps them to implementations in exist-
ing apps.

1The UIs with semantically annotated elements are available at
http://interactionmining.org/rico.

UI Components
To identify a set of UI component categories that frequently
occur in Android apps, we referenced popular design tools
and languages that expose component libraries such as Bal-
samiq [27] and Google’s Material Design [4]. Using a
consensus-driven, iterative approach, three researchers ex-
amined the component categories enumerated by these ref-
erences, and merged together classes close in appearance and
functionality. For example, “Date-Choosers” are merged to-
gether with DATE-PICKERS, and “Chips” with TEXT BUT-
TONS.

We also performed an iterative open coding of 720 screens
from Rico, or approximately 1% of the dataset. We created
this UI coding set by randomly sampling 30 apps from Rico’s
24 app categories, and then randomly sampling one screen
from each app. Three researchers from our team indepen-
dently coded the screen’s elements, noting any component
types that were not part of the initial vocabulary. After the
initial coding, the researchers met and discussed discrepan-
cies and the set of new component categories until consensus
was reached.

This process yielded 25 Android components:
ADVERTISEMENT, BACKGROUND IMAGE, BOTTOM
NAVIGATION, BUTTON BAR, CARD, CHECKBOX, DATE
PICKER, DRAWER, ICON, IMAGE, INPUT, LIST ITEM, MAP
VIEW, MODAL, MULTI-TAB, NUMBER STEPPER, ON/OFF
SWITCH, PAGER INDICATOR, RADIO BUTTON, SLIDER,
TEXT, TEXT BUTTON, TOOLBAR, VIDEO, and WEB VIEW.
We provide a example of each component in Figure ??.

UX Concepts
To construct a set of functional semantic concepts, we fur-
ther analyzed TEXT BUTTON and ICON elements, since they
indicate possible interactions on a screen (e.g., login button,
search icon) [3]. We mine UX concepts directly from the text
buttons by extracting and clustering the text contained within
them. To mine UX concepts from icons, we first identify
classes of visually similar icons through an iterative coding of
73k elements. Then we extract words (i.e., concepts) which
describe each visual class by analyzing developer-defined
code properties of its examples.

http://interactionmining.org/rico


Figure 3: The 28 most frequent UX concepts mined from buttons, identi-
fied through clustering 20,386 unique button text strings.

Text Buttons
Based on the text button examples we identified while catego-
rizing UI components, we developed a heuristic for extract-
ing text buttons from Android view hierarchies: any element
whose class or ancestors property contains the string
“button.” Using this criteria, we extracted 130,761 buttons
from the Rico dataset, and found 20,386 unique button text
strings.

To mine UX concepts from these buttons, we filtered out but-
ton text comprising a single character or appearing in fewer
than five apps, and clustered text strings that have substrings
in common such as “retry” and “try again.” We determined
a UX concept (e.g., create, log in) for each cluster based on
the most frequently occurring words in the set. Each unique
text string can belong to more than one cluster. For example,
“login with facebook” is part of both “login” and “facebook”
concepts.

The research team verified the set of concept categories and
button text mappings as a group. Team members discussed
decisions to split or merge concept groups until consensus
was reached. At the end of this process, we identified 197 text
button concepts. Example concepts and related text button
strings are shown in Figure 3.

Icons
To create a taxonomy of icons, we extracted a large set of
representative examples from the Rico dataset using the fol-
lowing heuristic: an image component that is clickable
and visible-to-user, whose area is less than 5% of
the total screen area, and whose aspect ratio is greater than
0.75 (smaller dimension divided by larger dimension). We
use an element’s bounds properties to compute its area and
aspect ratio, and also to automatically crop the element from
the screenshot.

Using this conservative heuristic — and after removing du-
plicate components from each app — we identified a set of
73,449 potential icons: small, squarish images. Through an
iterative open coding of this set, we determined 135 icon
classes that frequently occur in the Rico dataset.

We built two web applications to facilitate high-quality and
efficient coding of icons. The first application allowed us to
quickly assign classes to icons by presenting researchers with
unlabeled images and a lexicon of categories bootstrapped
from Google’s Material icon set [12]. Researchers assigned
labels using an input field that autocompleted on categories
already in the lexicon (including ‘not an icon’), and created
new categories when necessary.

The second application enabled researchers to quickly review
and refine categories and the elements assigned to them as a
group. As part of this process, we identified distinguishing
features for visually-similar icons to remove ambiguity. For
example, we require that skip_next icons have a vertical line
after the arrows to distinguish them from the visually-similar
av_forward class. We assigned 78% of the potential icons
to 135 classes, determined that 11,205 images did not actually
represent icons, and labeled the 13,108 remaining candidates
as too niche to belong to a icon category.



Figure 4: The 80 most frequent icon classes, identified through an iterative open coding of 73k elements from the Rico dataset. Given the labeled data
for each icon class, we compute an “average icon” and a set of related text concepts. For each icon class, we also present precision/recall metrics from a
CNN trained to distinguish between 99 common categories, and 10 predicted examples from the test set.



To map icons to UX concepts, we mine the set of words used
by developers to characterize each icon class. While icons
are concise, the same visual representation can have different
meaning depending on the context (i.e., polysemy) or have a
meaning that may not be immediately apparent [23]. To un-
derstand an icon category’s range of meanings, we extracted
the resource-id property associated with the examples
for that class. We split each resource-id on underscores
or via camel-case parsing, and performed tf-idf to identify the
substrings that are characteristic of each class. We use these
words sets — which are similar to the synonym sets exposed
by WordNet [20] — to map icons to text concepts (Figure 4).

Our analysis reveals not only what developers call each icon,
but also how the icons are used: for example, national_flag

is used for both location and language purposes. In fact,
the lexical database can itself be used as a design resource to
understand how button text and visually distinct icons relate
to UX concepts. It reveals whether concepts are most often
expressed as text or icons, and if there are visually distinct
icons that have similar meaning (for example, add and
edit can both signify the concept of creation). We found
that some concepts are predominantly text-based (log in, sign
in), some are purely graphical (navigation , gift ), and
identified 94 that are expressed both as text buttons and icons.

AUTOMATING UI/UX DESIGN SEMANTICS
Having created a lexical database that enumerates a set of de-
sign semantics, we develop an automatic approach for an-
notating mobile UIs with them. Similar to the way Ima-
geNet [10] used WordNet to organize images, we leverage the
vocabulary provided by the lexical database and the set of la-
beled examples to learn how to automatically detect different
components and concepts. Given an Android UI’s screenshot
and view hierarchy, we are able to automatically identify 25
UI component categories, 197 text button concepts, and 99
classes of icons.

Identifying Components
Prior work has shown that Android “widgets” are often con-
structed by grouping Android elements in regular ways [1,
24]. Shirazi et al. performed a static analysis of the XML
files that define Android interfaces and exploited parent-
child-element combinations to identify a common set of wid-
gets [24]. For example, they identified two “TextView” el-
ements within a “LinearLayout” as a common widget; how-
ever, they did not attribute any semantic meanings to these
code patterns. Similarly, Alharbi et al. identified a small set
of common UI components and describe how Android devel-
opers construct them [1].

Code-based heuristics
Using the labeled data provided by the lexical database, we
discover and exploit similar code-based patterns in the view
hierarchy to classify non-icon UI components. We determine
the component type of an element primarily by examining its
Android class and the classes it inherits from, exposed by its
class and ancestors properties, respectively (Figure 5).
For example, we identify IMAGES as elements whose class
is “ImageView” or inherit from it. Some components have

a few simple additional conditions: BACKGROUND IMAGE
components, for instance, are IMAGES that cover most of the
screen. To discover if characteristic class names exist for a UI
component category, we extract the class and ancestors
properties from labeled elements in its category, and run a tf-
idf analysis over the set of strings.

In conjunction with class-based heuristics, structure-based
patterns can be used to detect certain UI components. These
rules examine an element’s relation to its ancestors, descen-
dants, or the view hierarchy itself.

Figure 5: We identify most components by their class or the classes they
inherit from, and Drawers and List Items based on the class names of
their parent nodes.



UI components such as LIST ITEM and DRAWER occur as
children or descendants of specific types of nodes. To iden-
tify LIST ITEM, which can be assigned any Android class,
we identify container classes that represent lists such as
“ListView” and “RecyclerView,” and then label the elements
inside those containers as LIST ITEM. DRAWER is recognized
in a similar way: the second child of a “DrawerLayout” el-
ement (the first child holds the elements below the drawer).
Conversely, PAGER INDICATOR components can be identified
through their children since they are often constructed via a
generic layout container with multiple, small children repre-
senting the dots inside. MODAL components are elements that
occur at the top of the view hierarchy, but have an area that is
smaller than the size of the phone screen.

Finally, elements that have not been labeled anything else, but
have a non-empty text view hierarchy property are labeled
as TEXT components.

Results
Based on the outlined rules, we computed semantic labels for
the elements in the Rico dataset. To compute the total num-
ber of elements in Rico which could have labels, we removed
invisible, and redundant nodes that do not contribute to the
UI screen [24]. In total, our approach can label 1,384,653 out
of the 1,776,412 (77.95%) visible, non-redundant elements
present in the Rico dataset, averaging 25 component annota-
tions per UI.

Figure 6 shows the distribution of app categories for each
of 16 UI components. From this distribution, we can make
a number of observations. Health and fitness apps tend to
use the NUMBER STEPPER component much more than other
types of apps, perhaps because the entry of numerical infor-
mation is a common activity within those apps. As one would
expect, MAP VIEW predominantly occurs in weather, travel,
and navigation apps. Interestingly, the BOTTOM NAVIGA-
TION component is commonly used in social apps. Overall,
TEXT, IMAGE, TEXT BUTTON, TOOLBARS, and LIST ITEM
account for the majority of components.

Classifying Icons
Based on the labeled data, we could not find a code-based
heuristic that distinguishes icons from images with high accu-
racy: the class names used to identify icons are not consistent.
Therefore, we train a vision-based, deep learning pipeline that
distinguishes between images and 99 icon classes, adapting a
convolutional neural network (CNN) architecture [7] to mul-
ticlass icon classification.

Preprocessing
We leverage the icons we extracted and labeled during the
creation of the lexical database for training. We merged
classes with similar meaning or appearance to decrease ambi-
guity and increase support. For instance, the more_horizontal

and more_vertical classes were combined into a single
more class, since one is just a rotation of the other; warning
, error , and announcement were similarly combined.
We used only icon classes with more than 40 examples for
training. After merging and filtering, we identified 99 classes
in a training set of 49,136 icons.

Figure 6: The distribution of Rico’s 27 app categories for each of 16 UI
components we identified.

We preprocessed the icon images in the training dataset using
the following standard vision techniques:

Conversion to greyscale: We converted icons to greyscale
to eliminate the effect of color on the convolutional neural
network, since color is usually not a factor in the design and
comprehensibility of an icon [15, 6]. Using greyscale images
also reduces training time since it reduces the dimensionality
of the problem.

Featurewise centering and standard deviation: The mean
over the entire dataset was set to 0 and the standard deviation
to 1. Samplewise centering and samplewise standard devia-
tion normalization worsened results and were not used.

Translation: Images were randomly moved along the x- and
y-axis by up to 10% of the image width.

ZCA whitening: Since icon meaning relies on shape-based
features, we use ZCA whitening to boost edges [6].



Figure 7: We pass all small, squarish images found in a UI’s view hierarchy through a classification pipeline that distinguishes between 99 classes of
icons and general image content using a CNN and anomaly detector, respectively. CNN stack labels denote layers × filters.

Model Architecture
The classification of small images is a well-studied problem
in several domains. For example, MNIST is a set of hand-
written digits commonly used for the training and evaluation
of computer vision models [19]. The CIFAR-100 dataset con-
sists of 32× 32 images of animals, plants, vehicles, devices,
and other real life objects [18].

We adapt the CNN architecture that currently performs the
best on the CIFAR-100 dataset to multiclass icon classifica-
tion since we have roughly the same number of classes [7].
Moreover, given that icons tend to be simpler and more ab-
stract than natural images, we hypothesized that the represen-
tational power of the architecture was sufficient to learn the
differences between the icon classes.

Our model comprises 17 convolutional layers, arranged into 6
stacks. After each stack, we applied max pooling with a stride
and filter size of 2, and increased the dropout by 0.1 (the ini-
tial dropout rate is 0). The last two layers are fully connected,
one with 512 neurons, and a final softmax activation layer
with 99 neurons. We trained the network to minimize cate-
gorical cross entropy loss with RMSprop. All layers except
the last used ELU activation.

Anomaly Detection
To distinguish between icons and images, the icon classifica-
tion pipeline should be able to detect images that differ sig-
nificantly from those in the icon dataset. We train an anomaly
detector that flags anomalous activations of the CNN’s last
softmax layer.

We computed the activations for each image in the poten-
tial icon dataset that we had labeled, which included positive
and negative examples of icons, and trained a Gaussian Mix-
ture Model on these activations. Specifically, we used scikit-
learn’s GaussianMixture with 128 components and full co-
variance [25]. Figure 7 shows the icon classification pipeline
in its entirety.

Results
We trained the CNN on 90% of the training examples for each
icon class, and used 10% as a holdout test set. We achieve an
overall accuracy of 99% on the training set, and 94% on the

test set (Figure 8). The macro precision and recall metrics
are the averages of the precision and recall of each class, re-
spectively. Unlike accuracy, each class is weighed equally in
these metrics.

Weak supervision from textual metadata has been useful for
increasing the accuracy of semantic predictions in domains
such as 3D modeling [28]. Therefore, we experimented with
using textual metadata from the Android view hierarchy, such
as associated text concepts mined from resource-ids: how-
ever, the additional training inputs did not increase perfor-
mance. Keeping a vision-only approach also allows icon clas-
sification on platforms and digital domains without Android
metadata.

Viewing anomaly detection as a binary classification prob-
lem, we are able to achieve 90% precision and 98% recall on
valid icons, meaning that the anomaly detector discards only
2% of valid icons. On the set of anomalies, we achieve 94%
precision and 78% recall.

The accuracy, precision, and recall metrics of the CNN com-
bined with the anomaly detection GMM are displayed in Fig-
ure 8. The overall accuracy of the classifier on the test dataset
decreases from 94% to 91%, and recall decreases from 86%
to 79% because some valid icons are classified as anomalies.
However, the precision of the CNN increases slightly from
87% to 91% since the anomaly detector often discards icons
that the CNN has difficulty placing into one of the 99 classes.

Figure 8: Icon classification performance metrics for 99 common classes,
with and without anomaly detection.



Figure 9: Our automated semantic approach applied to different mobile UIs. We extracted code-based patterns to semantically classify 24 out of the
25 types of UI components on a screen. To identify icons, we trained a convolutional neural network and anomaly detection pipeline which distinguishes
between images and 99 common classes of icons.

Annotating Rico
We use the code-based patterns for detecting UI components
and the icon classification pipeline to add semantic annota-
tions to the 72k unique UIs in the Rico dataset. The auto-
mated approach iterates over all elements in a UI’s view hi-
erarchy, and uses code-based properties to identify different
types of UI components and text button concepts. To iden-
tify icons, we pass all small, squarish images found in a UI’s
view hierarchy through the classification and anomaly detec-
tion pipeline.

Once we semantically label the elements in a view hier-
archy, we also generate a semantic version of its screen-
shot and view hierarchy, which are useful representations
for future data-driven applications (Figure 9). The anno-
tated UIs for the Rico dataset are available for download at
http://interactionmining.org/rico.

Training a Semantic Embedding
Deka et al. demonstrated how training an embedding using
UI screens that encode image and text content could power
example-based UI searches to recover visually similar UI
screens [8]. We implement a similar application, using the
semantic versions of the UI screenshots we computed over
the Rico dataset to train a convolutional autoencoder.

An autoencoder is a neural network consisting of two compo-
nents: an encoder that reduces the image down to a lower di-
mensional latent space, and a decoder that attempts to recon-
struct the image from the encoding. By training an autoen-
coder to accurately reproduce images, the architecture learns
a low-dimensional encoding representation for each one.

We downsampled the semantic screenshot images to 256×
128. Our encoder consists of 4 convolutional layers arranged
as 8×3, 16×3, 16×3, and 32×3 (filters × receptive fields).
A max pooling layer of size and stride 2 is applied after every
convolutional layer, resulting in a 32×16×32 encoded rep-
resentation. Our decoder consists of the encoding layers in
reverse order, with upsampling layers instead of max pooling
layers, and a final 3× 3 layer to convert back to the original
RGB input.

After training the autoencoder, we used the encoder to embed
the Rico UIs into the learned latent space, and then inserted
the embedded vectors into a ball tree [26] to run fast nearest
neighbor searches (Figure 10).

We compare the nearest neighbor search results with the ones
demonstrated by Deka et al. [8], which used screenshots en-
coding only text and image regions. Figure 10 shows search
results for both embeddings side-by-side over the same set of
queries. Our results demonstrate that autoencoders trained
with finer element-level semantics learn better screen-level
semantic embeddings.

LIMITATIONS AND FUTURE WORK
One limitation of this work is that many of the UI components
we have identified are specific to Android apps. However,
our vision-based classification pipeline is cross-platform, and
researchers can use this approach to train models that detect
other types of UI components found in other digital domains.

Another limitation is that the current CNN architecture does
not perform well on icons with low support in the training
set. As a result, we could not train a multiclass classifier that
recognized all icon types that we originally identified. Future
work could adapt one-shot image recognition techniques to
train better models for detecting new icons and those with
low support. These algorithms often exploit prior knowledge
learned from classes with large support to predict classes with
fewer training examples [17].

We hope that researchers leverage our semantic data to de-
velop new data-driven design applications. Semantic annota-
tions enable many kinds of design-based search interactions.
Semantic embeddings similar to the one demonstrated in this
paper can be trained to support example-based search over
app screens: designers can query with screens they have de-
signed to see which apps contain similar interactions.

Similarly, icon and text button classification can be used to
enable efficient flow search over large datasets of interaction
mining data. A user flow is a logical sequence of UI screens
for accomplishing a specific task in an app. Prior work has
shown that user flows can be identified in interaction traces by
examining the UI elements that a user has interacted with [9].
For example, if a user taps on a “search” icon, that usually
signifies the beginning of a search flow. Rico’s 72k dataset
of unique UIs comprises 14,495 click interactions, of which
9,461 involve text buttons or images. We are able to classify
57.5% of those interactions based on our set of 197 recog-
nized buttons and 99 icon types, which can serve as a starting
point for indexing flows.

http://interactionmining.org/rico


Figure 10: We train a autoencoder over the computed semantic screenshots, and compare nearest neighbor UI searches in this learned space to the
results presented in Deka et al. [8]. These results demonstrate that autoencoders trained with finer element-level semantics learn better screen-level
semantic embeddings.



Leveraging semantics to train generative models of design
is possibly the most exciting avenue for future work. Re-
searchers have proposed methods for automatically generat-
ing mobile UI code from screenshots [2, 21, 13, 22]. These
approaches seem to only work for simple UIs, and do not ex-
ploit the view hierarchy present in Android apps.

By taking semantic components as input, more powerful
probabilistic generative models of mobile UIs could be
learned. Techniques such as generative adversarial networks
and variational autoencoders could be used to build de-
sign tools that can autocomplete partial specifications of de-
signs [11]. For example, the tool could recognize that a de-
signer is creating a “login” screen based on the central place-
ment of a login button, and suggest adding other elements
such as “username” and “password” input fields. These tools
could translate a set of semantic constraints specified by a de-
signer (e.g., login button) into a cohesive visual layout and
information architecture, as well as suggest UI elements that
are missing from the design.

ACKNOWLEDGMENTS
We thank the reviewers for their helpful comments and sug-
gestions. This work was supported in part by a research do-
nation from Adobe, a Google Faculty Research Award, and
NSF Grant IIS-1750563.

REFERENCES
1. Khalid Alharbi and Tom Yeh. 2015. Collect, decompile,

extract, stats, and diff: Mining design pattern changes in
Android apps. In Proc. MobileHCI.

2. Tony Beltramelli. 2017. pix2code: Generating Code
from a Graphical User Interface Screenshot. arXiv
preprint arXiv:1705.07962 (2017).

3. Elizabeth Boling, Joanne E Beriswill, Richard Xaver,
Christopher Hebb, and others. 1998. Text labels for
hypertext navigation buttons. International Journal of
Instructional Media 25 (1998), 407.

4. Call-Em-All. 2018. Material-UI. (2018).
https://material-ui-next.com/

5. Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen
Giguere, and Thomas Funkhouser. 2013. Attribit:
content creation with semantic attributes. In Proc. UIST.

6. Chun-Ching Chen. 2015. User recognition and
preference of app icon stylization design on the
smartphone. In Proc. HCII. Springer.

7. Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). CoRR
abs/1511.07289 (2015).

8. Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proc.
UIST.

9. Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016.
ERICA: Interaction Mining Mobile Apps. In Proc.
UIST.

10. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In Proc. CVPR.

11. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Proc. NIPS.

12. Google. 2017. Material Icons. (2017).
https://material.io/icons/

13. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep Residual Learning for Image
Recognition. CoRR abs/1512.03385 (2015).

14. Ali Jahanian, Shaiyan Keshvari, SVN Vishwanathan,
and Jan P Allebach. 2017. Colors–Messengers of
Concepts: Visual Design Mining for Learning Color
Semantics. In Proc. TOCHI.

15. Charles J Kacmar and Jane M Carey. 1991. Assessing
the usability of icons in user interfaces. Behaviour &
Information Technology 10 (1991).

16. Shigenobu Kobayashi. 1991. Color Image Scale.
Kosdansha International.

17. Gregory Koch, Richard Zemel, and Ruslan
Salakhutdinov. 2015. Siamese neural networks for
one-shot image recognition. In Proc. ICML Deep
Learning Workshop.

18. Alex Krizhevsky and Geoffrey Hinton. 2009. Learning
multiple layers of features from tiny images. Technical
Report. Citeseer.

19. Yann LeCun. 1998. The MNIST database of handwritten
digits. http://yann. lecun. com/exdb/mnist/ (1998).

20. George A Miller. 1995. WordNet: a lexical database for
English. Commun. ACM 38 (1995).

21. Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio,
Richard Bonett, and Denys Poshyvanyk. 2018. Machine
Learning-Based Prototyping of Graphical User
Interfaces for Mobile Apps. arXiv preprint
arXiv:1802.02312 (2018).

22. Siva Natarajan and Christoph Csallner. 2018. P2A: A
Tool for Converting Pixels to Animated Mobile
Application User Interfaces. In Proc. MOBILESoft.

23. Yvonne Rogers. 1989. Icons at the interface: their
usefulness. Interacting with Computers 1 (1989).

24. Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt,
Robin Goldberg, Benjamin Schmidt, and Hansjörg
Schmauder. 2013. Insights into layout patterns of mobile
user interfaces by an automatic analysis of android apps.
In Proc. EICS.

25. scikit-learn developers. 2017a. Gaussian mixture
models. (2017). http:
//scikit-learn.org/stable/modules/mixture.html

https://material-ui-next.com/
https://material.io/icons/
http://scikit-learn.org/stable/modules/mixture.html
http://scikit-learn.org/stable/modules/mixture.html


26. scikit-learn developers. 2017b.
sklearn.neighbors.BallTree. (2017).
http://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.BallTree.html

27. Balsamiq Studios. 2018. basalmiq. (2018).
https://balsamiq.com/

28. Li Yi, Leonidas J. Guibas, Aaron Hertzmann,
Vladimir G. Kim, Hao Su, and Ersin Yumer. 2017.
Learning Hierarchical Shape Segmentation and Labeling
from Online Repositories. In Proc. SIGGRAPH.

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
https://balsamiq.com/

	Introduction
	Creating a Lexical UI/UX Database
	UI Components
	UX Concepts
	Text Buttons
	Icons


	Automating UI/UX Design Semantics
	Identifying Components
	Code-based heuristics
	Results

	Classifying Icons
	Preprocessing
	Model Architecture
	Anomaly Detection
	Results

	Annotating Rico
	Training a Semantic Embedding

	Limitations and Future Work
	Acknowledgments
	References 

