
ERICA: Interaction Mining Mobile Apps

Biplab Deka1 Zifeng Huang2 Ranjitha Kumar2

1Department of Electrical and Computer Engineering 2Department of Computer Science
University of Illinois at Urbana-Champaign

{deka2,zhuang45,ranjitha}@illinois.edu

Search FlowUI Hierarchy

Screenshot

User
Interaction

User Interaction Trace

…

Figure 1: ERICA, a scalable system for interaction mining Android applications, captures interaction traces as users interact with an Android app.
These traces contain snapshots of the app’s UI over time (as screenshots and view hierarchies) as well as user interaction data. Here a search
flow is highlighted within an interaction trace from the Amazon shopping app.

ABSTRACT
Design plays an important role in adoption of apps. App de-
sign, however, is a complex process with multiple design ac-
tivities. To enable data-driven app design applications, we
present interaction mining – capturing both static (UI lay-
outs, visual details) and dynamic (user flows, motion details)
components of an app’s design. We present ERICA, a sys-
tem that takes a scalable, human-computer approach to in-
teraction mining existing Android apps without the need to
modify them in any way. As users interact with apps through
ERICA, it detects UI changes, seamlessly records multiple
data-streams in the background, and unifies them into a user
interaction trace (Figure 1). Using ERICA we collected in-
teraction traces from over a thousand popular Android apps.
Leveraging this trace data, we built machine learning classi-
fiers to detect elements and layouts indicative of 23 common
user flows. User flows are an important component of user ex-
perience (UX) design and consists of a sequence of UI states
that represent semantically meaningful tasks such as search-
ing or composing. With these classifiers, we identified and in-
dexed more than 3000 flow examples, and released the largest
online search engine of user flows in Android apps.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST 2016, October 16 - 19, 2016, Tokyo, Japan
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4189-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2984511.2984581

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques

Author Keywords
Interaction mining; app design; design mining; user flows

INTRODUCTION
Design plays an important role in the adoption of apps [21].
App design, however, is a complex process comprised of
multiple design activities: researchers, designers, and devel-
opers must all work together to identify user needs, create
user flows (UX design), determine the proper layout of UI
elements (UI design), and define their visual (visual design)
and interactive (interaction design) properties [2]. To create
durable and engaging applications, app builders must con-
sider hundreds of solutions from a vast space of design possi-
bilities, prototype the most promising ones, and evaluate their
effectiveness heuristically and through user testing.

To help navigate this complex process, this paper intro-
duces interaction mining: capturing and analyzing both static
(UI layouts, visual details) and dynamic (user flows, mo-
tion details) components of an application’s design. Mined
at scale, the data produced by interaction mining enables
tools that scaffold the app design process: finding examples
for design inspiration, understanding successful patterns and
trends, generating new designs, and evaluating alternatives.

This paper takes a human-computer approach to interaction
mining, using people to understand and interact with UIs,
and machines to capture the UI states they explore. This ap-

{deka2, zhuang45, ranjitha}@illinois.edu
http://dx.doi.org/10.1145/2984511.2984581

proach is manifest in ERICA1, a system for interaction min-
ing Android apps which demonstrates, for the first time, a
scalable way to mine the dynamic components of digital de-
sign. ERICA provides a web-based interface through which
users interact with apps installed on Android devices. As a
user navigates an app’s interface, ERICA detects UI changes;
seamlessly records screenshots, view hierarchies [6], and
user events; and combines them into a unified representation
called an interaction trace (Figures 1 and 2). ERICA requires
no modifications to an app’s source code or binary, making
interaction mining possible for any Android app.

We used ERICA to collect user interaction traces from more
than one thousand popular apps from the Google Play Store.
These traces contain more than 18, 000 unique UI screens,
50, 000 user interactions, and half a million interactive ele-
ments. Leveraging this trace data, we built machine learn-
ing classifiers to detect elements and layouts indicative of
23 common user flows. User flows are important compo-
nents of UX design, comprising sequences of UI states that
represent semantically meaningful tasks such as searching
or composing [4]. With these classifiers, we identified and
indexed more than 3000 flow examples, and released the
largest online search engine of user flows in mobile apps:
http://interactionmining.org.

This paper presents the principles of interaction mining, ER-
ICA’s design choices and implementation, and an analysis of
the collected mobile interaction trace data. It illustrates how
the data captured by ERICA enables automatic identification
of user flows, and presents example flows found in several
popular apps. Lastly, it sketches the space of applications
interaction mining enables, with examples from UI Design,
motion design, UI implementation, and usability testing.

BACKGROUND AND RELATED WORK
Our work builds upon previous work in design mining. First
introduced by Kumar et al. in Webzeitgiest [22], design min-
ing was developed to learn about web design practices at
scale. Their system captured and combined the visual and
structural representations of webpages to compute design fea-
tures that were used to power a number of data-driven design
tools. Our work generalizes this approach to dynamic ap-
plications, capturing not just static layouts, but also dynamic
components of design (such as animations) and how multiple
UI designs are connected via user interactions.

In the mobile domain, several authors have used static ap-
proaches to mine mobile app UIs. These methods extract UI
layouts from app packages without running the app, and have
been used to study design pattern changes over time [15],
identify frequently-used UI components [28], and understand
characteristics of highly-rated apps [31]. The main limitation
of static methods is that they fail to capture any dynamic data,
and so cannot help build design tools for the dynamic com-
ponents of an app’s design.

Dynamic approaches for mining mobile apps, conversely,
capture data at runtime [23]. Dynamic mining methods can
1ERICA is an acronym for Enabling Realtime Interaction Capture
for Android apps.

AppsUsers

ERICA

Flow Search Engine

…

User Traces

Data-driven Tools

…

! Usability Issues

Layout
Demographics

Reverse
Engineering

…

Figure 2: As users interact with apps through ERICA, it records user
interaction traces in the background. Mining interaction traces from
apps in the wild enables data-driven design applications such as build-
ing a search engine for user flows.

be difficult to implement due to the challenges associated
with driving an app’s graphical UI to reach new states [29],
but dynamic approaches have nonetheless been deployed for
testing [24], detecting security vulnerabilities [27, 17], and
modeling web applications [25]. The main limitation of these
approaches, however, is that they fail to explore app UIs in
a manner that mirrors human usage. This makes it difficult
to extract meaningful user flows from the captured data —
an important goal for interaction mining. ERICA overcomes
this limitation by using humans to drive app exploration.

INTERACTION MINING
The aim of interaction mining is to build a design repository
and set of data structures to support design tools that scaffold
the entire mobile app design process. Accordingly, an inter-
action mining system must possess the following capabilities:

Capture of multiple design components. An app’s design
consists of multiple components: how users move from one
UI to another to complete tasks, how UIs are laid out, the vi-
sual details of the UIs and their elements, and how each UI
responds to user interactions. Supporting data-driven design
tools for app design requires capturing each of these com-
ponents. This capture is challenging because it requires col-
lecting, combining, and correlating multiple types of data, in-
cluding both visual and structural representations of UIs and
their elements, as well as user interaction details.

Coverage of important UI states. In order for the design data
produced by interaction mining to help designers understand
the experiences an app affords, it must capture UI states that
are frequently used by humans. Discovering and navigating
to each of these states in an automated way is difficult, and
requires an understanding of how to interact with different
UIs. Additionally, states must be visited in a natural, semantic
order to be able to capture meaningful user flows.

http://interactionmining.org

File System
Screenshots, XML,

User Events

Android Devices

App Repository

App Store
Crawler

Data Collector Post Processor Applications

App Crawler

Flow
Search

Application

Post Process
Element Extraction,

Feature Computation

Flow
Detectors

Android Play
Store

Back End

Web Client

User
Interactions NoSQL

Datastore
Element, view,
session details

GIFs

API Data Driven
Tools

Figure 3: ERICA’s Architecture. Apps from the Google Play Store are run on physical Android
devices. Users interact with these apps through a web interface that allows the system to capture
their interactions as well as the state of the app’s UI. Post processing scripts compute structural
properties of elements and UIs and store them in a NoSQL datastore. Client applications access
data through a web API.

Figure 4: ERICA’s data collection in-
frastructure. Here ERICA’s web client
is being used in a browser on a phone
in fullscreen mode to interact with an
app running on one of the other An-
droid devices connected to the server
(second from the left). ERICA collects
information about the app in real-time
while the user is interacting with it.

Scalability. The utility of interaction mining hinges on the
scale of the corpus it can build. Larger repositories improve
both diversity of results in example-based applications as well
as the accuracy of machine learning models trained on the
mined data. Mining strategies that require access to an app’s
source code or the cooperation of an app’s developer, there-
fore, are less useful than those that take a black-box approach
to working with the millions of extant mobile apps.

ERICA: INTERACTION MINING FOR ANDROID APPS
ERICA is a system that enables interaction mining for An-
droid apps in a black-box manner. It combines the strengths
of humans and machines, using humans to drive app interac-
tions and computers to capture design and interaction data.

Design Choices

Human-Powered Exploration
To generate meaningful interactions for different UIs, ERICA
leverages humans to interact with an app while it captures
their interactions and the resultant UIs. ERICA employs a
human-powered approach over an automated one for several
reasons.

First, human interactions are more likely to produce realistic
user flows. The space of possible interaction sequences in
apps is large, and only a small fraction of such sequences
represent semantically-meaningful flows.

Second, many apps require user input (e.g., usernames, pass-
words, queries, content, etc.) before meaningful interaction

can occur. Automatically creating valid user data across a
large number of apps is a challenging problem.

Third, for captured UI data to be meaningful, a new UI state
should only be captured after the UI has completely updated
in response to a user interaction. Automatically detecting
the completion of UI updates is another challenging problem,
since updates can happen asynchronously in response to ex-
ternal events (for example, when data from a remote server
is received). Humans, however, are capable of detecting the
completion of UI updates with relative ease.

Web-Based Interaction Interface
ERICA users interact with Android apps through a web-based
interface, as opposed to directly accessing the devices on
which the apps run. There are two reasons for this design de-
cision. First, having a web-based interface makes it possible
to crowdsource data collection over the Internet. Users do not
need to use a specific device or install any software on their
devices. Second, the servers that power ERICA have much
greater compute capability than a phone or tablet, allowing
interaction data to be captured in the background without neg-
atively affecting user experience.

Although ERICA users interact with apps through a web in-
terface, ERICA still offers a near-native experience for users.
ERICA is powered by a responsive web front-end which,
when used in fullscreen mode on a mobile browser, mirrors
the screen of the device on which the app is running.

Physical Devices
ERICA runs Android apps on physical phones and tablets
connected to the ERICA server. Physical devices offer more
predictable UI performance and support a wider variety of
features (such as OpenGL 2.0) across a larger number of apps,
compared to the best Android emulators available today.

Implementation
ERICA comprises four components: an app crawler, a data
collector, a post-processor, and a web API (Figure 3). The
app crawler obtains APK files for Android apps from the
Google Play Store. The data collector captures the state of
an app’s UI as users interact with it. The post-processor com-
bines the captured data streams into a single unified repre-
sentation – an interaction trace. It also computes visual and
textual features for UI elements and stores them in a NoSQL
datastore for subsequent querying. Client applications access
ERICA’s data through the web API.

App Crawler
The app crawler uses the Google Play Store API to download
Android APK files for apps, along with metadata such as app
rating, number of downloads, and app category.

Data Collector
The data collector allows users to interact with Android apps
through a web interface and captures three kinds of data in
real-time: screenshots (visual representation of UIs), view
hierarchies (structural representation of UIs) and user inter-
actions. The collector comprises three components: a set of
Android devices, a back-end server, and a web client. Each
Android device is a physical phone connected to the back-
end server via USB, and each one runs a modified version of
Android OS.

The back-end manages the devices and installs Android apps
on them. It sends the device’s UI as compressed JPEG images
to the web client using a WebSocket connection. It also relays
user inputs from the web client to the device. Finally, it saves
the captured data to the local file system.

The web client displays images of the app’s UI in a browser
and allows users to interact with it. It has a responsive layout
and can be used on devices of varying form factors, including
desktops and mobile devices. On a mobile device, with the
browser in full-screen mode, it offers a near-native app expe-
rience (Figure 4). Both the back-end server and the web client
are implemented on top of the OpenSTF framework [12].
The minitouch library allows the web client to support
all common multitouch gestures when used on touchscreen
devices, and two-finger pinch, rotate, and zoom on regular
PCs [10].

Implementing the data collector required overcoming two
technical challenges:

Capturing UI Data With Low Latency. Capturing UI data
in an app without any perceptible user delay is nontriv-
ial. To capture UI changes in response to user interactions,
ERICA requests the structured representation of an app’s
UI every time a user interacts with it. Android’s default
UiAutomator service, which is commonly used to request

view hierarchies from Android devices, is poorly-suited for
this purpose as it takes multiple seconds to return the data [7].
Instead, we modified Android OS to implement a custom ser-
vice that responds within about a hundred milliseconds. This
service was built by augmenting the Android classes that de-
fine UIs and UI elements with custom methods that dump
properties of their instances at runtime. The service returns
a hierarchical representation of the UI in XML format and
has properties (such as position and size) for all the elements
on the screen. The service also allows capturing additional
properties of UI elements that are not available through the
UiAutomator service, such as font family and size infor-
mation for text elements.

Capturing screenshots of a UI multiple times a second enables
a smooth user experience when interacting with apps through
the web front-end. It also enables high-fidelity viewing of the
motion details of the app (animations and transitions) from
the captured data. ERICA uses the minicap library [9] to
enable the capture of more than ten screenshots per second,
configured to trigger whenever pixels on the device screen
change.

Inferring Gestures. When a user interacts with an app’s UI
through the web client, the client captures user input events
(such as TouchUp, TouchMove and TouchDown) and
their coordinates. These events are relayed to the Android
device via the server. Android translates these low-level in-
put events to gestures (such as clicks, scrolls, longtaps etc.),
and, if applicable, dispatches them to the appropriate element
on the UI [8].

Accurately inferring high-level gestures from the low-level
input events captured by the web client is a challenging task.
Instead, ERICA captures gestures directly from Android OS
by modifying Android to output the type and target element
of a gesture every time one is detected.

Post-Processor
The post-processor reconciles the three streams of captured
data and combines them to form a unified representation
called an interaction trace. It parses the structural represen-
tation of UI screens to identify individual UI elements, crops
the elements from the screenshot, and saves them to the file
system. Element properties (such as size, location, and con-
tained text) are also saved to a NoSQL datastore for subse-
quent querying. Multiple screenshots are combined to form
animated GIFs that show how a UI responds to different user
interactions. A web API provides access to the data stored in
the file system and in the NoSQL datastore.

COLLECTING USER INTERACTION TRACES
We used ERICA to collect user interaction traces from more
than a thousand Android apps, building a corpus by crawling
the top 100 apps from 30 different categories on the Google
Play Store. We recruited 28 participants for data collection
through posters and email lists, briefed them about the study,
and gave them a short tutorial on ERICA’s web interface.
Each participant was free to use each app totally unsupervised
and without any time limit. To protect participants’ privacy,
we instructed them to input fake personal data as necessary.

Clicked Elements from Traces

Unsupervised
Clustering

Semantic Clusters

“search”
“share”
“menu”
“add”
“done” Element

Classification

search
“register”
“sign up”
“add
account” 
“login”

share

promote

IconsIcons Text Text

Figure 5: Unsupervised clustering of interactive elements produced clusters that helped identify the most common types of semantically-
meaningful elements in the ERICA dataset. We used this information to build visual and text-based classifiers to detect these elements in
UIs, and leverage them to identify semantically meaningful flows in user interaction traces.

The participants completed 1186 sessions for 1150 apps. Af-
ter rejecting sessions with less than 5 interactions, we were
left with 1065 sessions for 1011 apps, consisting of more than
18, 000 unique UI screens, 52, 000 gestures, 500, 000 interac-
tive elements, and 6.7 million total elements. On average,
sessions lasted 4 minutes (min 30 seconds, max 21 minutes)
and had 51 interactions over 18 unique UI screens. Users em-
ployed 5 Android activities in each app on average, and per-
formed 6.2 interactions in each activity (activities are compo-
nents of Android apps that allow users to perform a specific
task [5]).

EXTRACTING SEMANTIC USER FLOWS AT SCALE
In this section, we present an automated method for identify-
ing examples of user flows in interaction traces. User flows
are an important component of UX design, comprising se-
quences of UIs and associated user interactions that define a
semantically-meaningful task (such as searching or sharing).

UX designers often search for example flows from existing
apps when seeking out inspiration for new projects [20]. This
need has given rise to several popular online repositories of
flows [14, 13, 11]. These repositories, however, are manually
curated by designers who must identify desirable flows and
manually capture associated screenshots, making them diffi-
cult to scale to large numbers of apps [1]. Our automated
flow identification places minimal burden on users, capturing
UI data during normal app usage and identifying flows as a
post-process in a scalable way.

Identifying User Flows
We developed two methods to identify user flows in inter-
action traces: an element-based method and a layout-based
one. These methods are based on two insights. First, apps are
generally designed with visual, textual, or structural cues in
their elements (or layouts) that help users identify important
semantic tasks. For example, a magnifying glass icon usually
indicates a search flow, and the words sign in usually indicate
a login flow.

Second, a user must interact with an indicative element in
order for it to be part of a corresponding flow. For exam-
ple, if we know that a user clicked the magnifying glass icon
on a particular UI screen, we expect that screen to be part

of a search flow. Based on these insights, we combine the
user interaction and UI data in an interaction trace to identify
meaningful flows.

Element-Based Flow Detection
To identify elements indicative of common flows in the ER-
ICA dataset, we clustered the elements users interacted with
based on their visual and textual features. We then build
classifiers to automatically identify similar elements in new
traces.

Clustering Interactive Elements. We clustered both text el-
ements and icons. We identified text elements using the text
string associated with them in the structured representation of
the UI. Non-text elements smaller than 200 × 200 pixels and
with aspect ratios between 0.5 and 2 where chosen as candi-
date icons.

To cluster icons, we converted them to grayscale and scaled
the images to 50 × 50 pixels. We trained an autoencoder [16]
with 2500 inputs and two hidden layers (with 500 and 200
neurons, respectively) to learn a 20-dimensional feature vec-
tor, and then performed k-means clustering in this space. We
chose 100 clusters, since the mean-squared error plateaued
at that number. Icons from some of the largest clusters are
presented in Figure 5. We observed that many of the clusters
correspond to icons with semantic meaning such as sharing,
searching, or liking.

We computed the frequency of words and phrases across all
text elements in our dataset. Some of the text elements with
the highest frequency are presented in Figure 5. As with
icons, these elements also contain semantic meaning related
to flows.

Classifying Elements. Based on these clusters, we devel-
oped classifiers to automatically identify similar interactive
elements. For icons, we trained neural network-based classi-
fiers with an architecture similar to the autoencoder’s (2500
inputs, two hidden layers with 200 and 100 neurons). For
text elements, we built simple binary keyword-identification
classifiers for each flow. Some flows (such as search) have
both a icon-based and a text-based classifier. Examples of
flows detected in our dataset with these classifiers are shown
in Figure 6.

Promoting

Soccer Score Google Translate OpenTable

Issuu All Trails Best Apps Market Twitch

Adding

Trello Team Stream

Gallery VaultYummly

Searching

Play Books Bible

YouTube Amazon Music

Walmart

ICONS:

favoriteTEXT:

ICONS:

create, addTEXT:

ICONS:

searchTEXT:

Figure 6: Examples of three different types of flows detected in our dataset by using element-based detectors. Visual markers and textual
keywords that were used to identify each type of flow are also shown.

Composing

Clipper

Tumblr WeHeartIt

Consuming

Onboarding

Beep’nGo

Google Drive YouCam Perfect

Fox News

Reddit

+Android
TextView

 2 Scroll
Interactions

2000
Characters

in

Cricbuzz

Tutorial,
Skip,
Get Started

+Android
ViewPager

TEXT:

Android
EditText

Occupies 60%
of Remaining

Screen

Keyboard
Deployed

123

+

Figure 7: Examples of three different types of flows detected in our dataset by using layout or Android component-based features. Patterns that
were used to identify each type of flow are also shown.

Free-form
Text Queries

Search From
List of Flows

Search Interface

Flow Viewer Interface

Search Results
with Indicative

Element
Highlighted

in Red

Animated GIFs
on Hover

Ability to Go
Back and Forth

in Trace

User Interactions
Shown With Blue

Dots

Figure 8: The search interface for finding and visualizing example flows found in the ERICA dataset.
Users can search for one of the 23 pre-identified flows or perform free-form text based queries. Each
search result shows one UI screen from an app with the indicative element for the flow highlighted in red.
Clicking on one of the results takes users to a flow viewer interface that shows the screen from the results
page in the context of the nearby screens in the interaction trace. Hovering on an image brings up an
animated GIF showing how the UI responded to the user interaction shown on it.

0

25

50

75

100

0 2 4 6 8 10

Co
ve

ra
ge

 (%
)

of Users

Wallet: 8/8 Activities

0

25

50

75

100

0 2 4 6 8 10

Co
ve

ra
ge

 (%
)

of Users

WeHeartIt: 32/74 Activities

0

25

50

75

100

0 2 4 6 8 10

Co
ve

ra
ge

 (%
)

of Users

Yelp: 47/166 Activities

Figure 9: Coverage of activi-
ties in the app wallet (top), we-
heartit (middle), and yelp (bot-
tom) with respect to the num-
ber of users whose interaction
traces were combined. Cov-
erage does not increase sig-
nificantly after 5–8 users since
there is significant overlap be-
tween activities that different
users visit.

Layout-Based Flow Detection
We can also detect flows by identifying screens with specific
UI layouts (or Android components) on which specific ges-
tures are performed. We developed detectors for three such
patterns. Figure 7 shows examples of these flows in our
dataset. Consuming flows were identified by searching for
UIs with more than 2000 characters of text where users have
also scrolled at least twice. Composing flows were detected
by searching for UIs with a deployed keyboard and with text
input boxes that covered more than 60% of the remaining
screen space. Onboarding flows were found by searching
for the Android ViewPager component (generally seen as
a sequence of dots on the screen) along with the words get
started, skip, or tutorial.

Overall, we used element and layout based flow detection
methods to identify 23 flow types that are popular in existing
flow repositories and occur frequently in our dataset. 6.5% of
the elements users interacted with in our dataset were indica-
tive of one of these flows. On average, each app contained 3
such flow examples.

Flow Search Interface
Our pipeline for automated user flow identification allowed
us to build — in two months — a repository with flows from
7× more apps than UX Archive, the most popular existing
repository which has been in operation for four years [14].
We developed a web interface for searching and visualizing
the user flows found in our repository (Figure 8), and made it
available online at http://interactionmining.org.

The interface offers two ways to search for flow examples.
Users can select the name of a flow from a list, and see search
results from apps showing the relevant UI screen with the in-
dicative element highlighted in red. Users can also use text-
based queries to search for flows. These free-form queries
return results based on the text contained in UI elements as
well as the elements’ classname and id, since developers
frequently use descriptive names for these fields.

Clicking on a search result takes the user to the flow viewer
interface. It shows the UI screen from the results page with
the two previous and subsequent screens from the interaction
trace, as well as the interactions the user performed on these

http://interactionmining.org

screens. It does not explicitly show the beginning or end of
an example flow, but rather lets the user go back and forth in
the trace to view more UI screens as desired. In addition to
viewing a flow as a sequence of screenshots, users can also
view animated GIFs of the UIs responding to the shown user
interactions by hovering over the screenshots.

DISCUSSION AND FUTURE WORK
This paper demonstrates — for the first time — the possibil-
ity of mining user interactions and dynamic design data from
mobile apps. Our system, ERICA, uses a web-based interface
to allow crowdsourced data collection over the Internet. One
important avenue for future work is to mine a more substan-
tial portion of the available mobile apps, perhaps using crowd
workers on platforms such as Amazon Mechanical Turk.

Another way to improve the scale of ERICA’s repository
would be to increase the coverage of UI states within each
app. One way this might be accomplished is by combining
multiple user traces. Figure 9 illustrates how coverage in-
creased for three apps of varying complexity (measured by
the number of Android activities found in their APK files)
as multiple traces were combined. We observe that, like in
heuristic evaluation, 5-8 users appear to provide optimal cov-
erage [26]. For truly complex apps, coverage may remain
low even after aggregating many user traces, since many UI
states exist that humans do not visit during regular usage. Fu-
ture work could explore augmenting ERICA with automated
exploration strategies to visit these states.

While this paper focused on an application in UX design, in-
teraction mining can be useful for building data-driven design
tools targeted at other app design activities. The data pro-
duced by interaction mining can help designers understand
UI layout patterns and motion details in existing apps. For
example, Figure 10a shows heatmaps of common semantic
element placements in UI layouts. Figure 10b shows anima-
tion curves of sliding drawer menus, inferred using motion
detection techniques on the changing images of the UI.

The UI data captured by interaction mining can also sup-
port learning probabilistic generative models of mobile de-
signs [30]. Such models could enable automated mobile UI
generation — useful for building personalized interfaces and
retargeting UIs across form factors. The UI data produced
by ERICA even has enough information about elements and
layouts that it can be used to reverse engineer the source code
of existing app UIs. Figure 10d shows an example of reverse
engineering a UI from a popular app and rendering it on an
emulator in a different form factor.

Another important application area for interaction mining is
usability testing. Interaction mining can help designers dis-
cover usability bugs (such as users mistaking a UI screen to
be scrollable in Figure 10c). Interaction data collected from
a sufficiently large number of users could also enable sum-
mative usability testing for mobile apps without the need for
source code modifications [19].

Outside of design, semantic understanding of apps enabled by
interaction mining could improve the current metadata-based
approaches to indexing and searching in online app stores.

(a) Heatmap showing the locations of different kinds of semantic ele-
ments in UIs in the ERICA dataset.

(b) Animation curves for all
the sliding drawer menus in
the ERICA dataset.

(c) Usability bugs. Users tried to
scroll on UIs that did not support
scrolling.

(d) The representations of UIs captured by ERICA can be used to
generate Android source code that recreates the UI. We reverse en-
gineered a UI from the app StumbleUpon and generated the Android
source code which is then rendered on an emulator with a different
form factor.

Figure 10: Examples of data-driven applications enabled by ERICA
in UI design, motion design, usability testing, and UI implementation.

For example, learning a similarity metric over apps based on
the types of user flows they expose could enable more accu-
rate labeling and clustering [18]. In addition, improved se-
mantic understanding of mobile apps could enable automated
identification of useful target states for deep-linking.

With Google’s recent foray into web-based Android app
streaming, mobile app usage through a web interface may
become mainstream [3]. In such a world, an approach like
ERICA could enable interaction mining at truly massive
scale.

ACKNOWLEDGMENTS
We thank Erik Luo, Sujay Khandekar, Abhishek Harish, Ste-
fanus Hinardi, Jinda Han, and Kedan Li for their assistance
implementing different parts of this work.

REFERENCES
1. Review: UX Archive., 2013.

https://uxmag.com/articles/review-ux-archive.

https://uxmag.com/articles/review-ux-archive

2. UI, UX: Who Does What? A Designer’s Guide to the
Tech Industry, 2014. http://www.fastcodesign.
com/3032719/ui-ux-who-does-what-a-designers-
guide-to-the-tech-industry.

3. New Ways to Find (and Stream) App Content in Google
Search, 2015.
https://search.googleblog.com/2015/11/new-ways-
to-find-and-stream-app-content.html.

4. Tools for Mobile UX Design: Task Flows., 2015.
http://www.uxmatters.com/mt/archives/2015/03/
tools-for-mobile-ux-design-task-flows.php.

5. Android Activities, 2016.
https://developer.android.com/guide/components/
activities.html.

6. Android Hierarchy Viewer, 2016.
https://developer.android.com/studio/profile/
hierarchy-viewer.html.

7. Android UI Automator Framework, 2016.
http://developer.android.com/tools/help/
uiautomator/index.html.

8. Detecting Common Gestures, 2016.
https://developer.android.com/training/gestures/
detector.html.

9. Minicap: Stream Real-time Screen Capture Data Out of
Android Devices, 2016.
https://github.com/openstf/minicap.

10. Minitouch: Minimal Multitouch Event Producer for
Android, 2016.
https://github.com/openstf/minitouch.

11. Mobile Patterns, 2016.
http://www.mobile-patterns.com/.

12. OpenSTF: Smartphone Test Farm, 2016.
https://openstf.io/.

13. Pttrns, 2016. http://www.pttrns.com/.

14. UX Archive, 2016. http://www.uxarchive.com/.

15. Alharbi, K., and Yeh, T. Collect, decompile, extract,
stats, and diff: Mining design pattern changes in
Android apps. In Proc. MobileHCI (2015).

16. Bengio, Y. Learning deep architectures for ai.
Foundations and Trends in Machine Learning 2, 1
(2009).

17. Bhoraskar, R., Han, S., Jeon, J., Azim, T., Chen, S.,
Jung, J., Nath, S., Wang, R., and Wetherall, D.
Brahmastra: Driving apps to test the security of
third-party components. In Proc. SEC (2014).

18. Chang, S., Dai, P., Hong, L., Sheng, C., Zhang, T., and
Chi, E. H. Appgrouper: Knowledge-based interactive
clustering tool for app search results. In Proc. IUI
(2016).

19. Dray, S., and Siegel, D. Remote possibilities?:
international usability testing at a distance. Interactions
11, 2 (2004).

20. Eckert, C., Stacey, M., and Earl, C. References to past
designs. Studying Designers 5 (2005), 3–21.

21. Gualtieri, M. Best practices in user experience (UX)
design. 2009.

22. Kumar, R., Satyanarayan, A., Torres, C., Lim, M.,
Ahmad, S., Klemmer, S. R., and Talton, J. O.
Webzeitgeist: Design mining the web. In Proc. CHI
(2013).

23. Li, K., Xu, Z., and Chen, X. A platform for searching UI
component of Android application. In Proc. ICDH
(2014).

24. Machiry, A., Tahiliani, R., and Naik, M. Dynodroid: An
input generation system for Android apps. In Proc. FSE
(2013).

25. Mesbah, A., van Deursen, A., and Lenselink, S.
Crawling ajax-based web applications through dynamic
analysis of user interface state changes. ACM Trans.
Web 6, 1 (Mar. 2012), 3:1–3:30.

26. Nielsen, J. Finding usability problems through heuristic
evaluation. In Proc. CHI (1992), 373–380.

27. Rastogi, V., Chen, Y., and Enck, W. Appsplayground:
Automatic security analysis of smartphone applications.
In Proc. CODASPY (2013).

28. Sahami Shirazi, A., Henze, N., Schmidt, A., Goldberg,
R., Schmidt, B., and Schmauder, H. Insights into layout
patterns of mobile user interfaces by an automatic
analysis of Android apps. In Proc. EICS (2013).

29. Szydlowski, M., Egele, M., Kruegel, C., and Vigna, G.
Challenges for dynamic analysis of iOS applications. In
Open Problems in Network Security. Springer, 2012,
65–77.

30. Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N.,
and Měch, R. Learning design patterns with bayesian
grammar induction. In Proceedings of the 25th annual
ACM symposium on User interface software and
technology, ACM (2012).

31. Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. What
are the Characteristics of High-rated Apps? A Case
Study on Free Android Applications. In Proc. ICSME
(2015).

http://www.fastcodesign.
com/3032719/ui-ux-who-does-what-a-designers-guide-to-the-tech-industry
com/3032719/ui-ux-who-does-what-a-designers-guide-to-the-tech-industry
https://search.googleblog.com/2015/11/new-ways-to-find-and-stream-app-content.html
https://search.googleblog.com/2015/11/new-ways-to-find-and-stream-app-content.html
http://www.uxmatters.com/mt/archives/2015/03/tools-for-mobile-ux-design-task-flows.php
http://www.uxmatters.com/mt/archives/2015/03/tools-for-mobile-ux-design-task-flows.php
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/components/activities.html
https://developer.android.com/studio/profile/hierarchy-viewer.html
https://developer.android.com/studio/profile/hierarchy-viewer.html
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
https://developer.android.com/training/gestures/detector.html
https://developer.android.com/training/gestures/detector.html
https://github.com/openstf/minicap
https://github.com/openstf/minitouch
http://www.mobile-patterns.com/
https://openstf.io/
http://www.pttrns.com/
http://www.uxarchive.com/

	Introduction
	Background and Related Work
	Interaction Mining
	ERICA: Interaction Mining for Android Apps
	Design Choices
	Human-Powered Exploration
	Web-Based Interaction Interface
	Physical Devices

	Implementation
	App Crawler
	Data Collector
	Post-Processor

	Collecting User Interaction Traces
	Extracting Semantic User Flows at Scale
	Identifying User Flows
	Element-Based Flow Detection
	Layout-Based Flow Detection

	Flow Search Interface

	Discussion and Future Work
	Acknowledgments
	REFERENCES

